## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

## B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2023
UMT 3502 - DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM

Date: 04-05-2023
Time: 01:00 PM - 04:00 PM
Dept. No. $\square$ Max. : 100 Marks

## SECTION A

## Answer ALL the Questions

1. Answer the following
( $5 \times 1=5$ Marks)
a) Give the solution of the equation $\frac{d y}{d x}=\frac{1-y}{1+x}$.
b) Find the solution $\operatorname{of}\left(D^{2}+D+1\right) y=0$.

| K1 | CO1 |
| :---: | :---: | :---: |
| K1 | CO1 |


| c) | Write down the ru |
| :--- | :--- |
| d) | Write the Laplace |
| e) | Find $L^{-1}\left(\frac{s}{s^{2}+b^{2}}\right)$. |

.

|  | $F=\frac{d}{d t}(m v)$. |  |  |
| :---: | :--- | :---: | :---: |
| b) | The solution of the equation $r \frac{d p}{d r}+2 p=0$ is $2 c$. | К2 | CO1 |
| c) | The complementary function of the differential equation $\left(D^{2}+4\right) y=0$ has <br> imaginary roots. | К2 | CO1 |
| d) | $L\left\{t^{3}\right\}=\frac{3}{s^{n+1}}$ | K2 | CO1 |
| e) | Inverse Laplace transform is used to solve differential equations. | K2 | CO1 |
| SECTION B |  |  |  |
| Answer any TWO of the following: | $\mathbf{( 2 \times 1 0}=\mathbf{2 0}$ Marks) |  |  |
| $\mathbf{5 .}$ | Solve the equation $\sqrt{1+x^{2}} d x+\sqrt{1+y^{2}} d y=0$. | K3 | CO2 |
| $\mathbf{6 .}$ | Solve: $\left(D^{2}+4 D+5\right) y=e^{x}+x^{3}+\cos 2 x$. | K3 | CO2 |
| 7. | Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}$. | К3 | CO2 |
| $\mathbf{8 .}$ | Solve: $p x y+p q+q y=y z$. | K3 | CO2 |

## SECTION C

## Answer any TWO of the following:

9. Solve: $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.

|  |  | K4 | CO3 |
| :---: | :---: | :---: | :---: |
|  |  | K4 | CO3 |
| rectangular | wave given by | K4 | CO3 |
| $t-a t \cos a t\}$ |  | K4 | CO3 |

## SECTION D

## Answer any ONE of the following:

13. a) A particle falls under gravity in a resisting medium whose resistance varies
 particle starts from rest.
b) Evaluate the differential equation to find the solution of $y$ in $x \frac{d y}{d x}+y \log x=e^{x} x^{1-1 / 2 \log x} \quad(10+10)$
14. a) Applying the variation of parameters find the solution of $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.
K5
15. Solve: $p \cot x+q \cot y=\cot z$.
16. 

Find (i) $L\left\{t^{2} \cos ^{2} t\right\}$
(ii) $L\{\sin a t-a t \cos a t\}$
b) Solve the equation $(x-1) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=(x-1)^{2}$, given that $x$ and $e^{x}$ are the integrals of the equation without the right-hand member.
(10+10)

## SECTION E

## Answer any ONE of the following

| 15. | a) | Applying Lagrange's equation solve, $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$. | K6 | CO5 |
| :---: | :---: | :--- | :--- | :--- |
|  | b) | Formulate the Charpit's method to solve, $p^{2}+q^{2}-2 p x-2 q y+1=0$. <br> $(10+10)$ | K6 | CO5 |
| 16. |  | A particle moving a $x y$ plane such that the position $(x, y)$ at any point is given <br> by $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}-5 y=5$, with initial displacement is zero and initial velocity <br> is 2. Determine the value of $y$ satisfying the equation. | K6 | CO5 |

