	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034					
B.Sc. DEGREE EXAMINATION – MATHEMATICS						
THIRD SEMESTER – APRIL 2023						
UMT 3502 – DIFFERENTIAL EOUATIONS AND LAPLACE TRANSFORM						
		•==				
Date	e: 04-05-2023 Dept. No. Max.	: 100	Marks			
Tim	e: 01:00 PM - 04:00 PM					
	SECTION A					
Answ	ver ALL the Questions					
1.	Answer the following $(5 \ge 1 = 5)$	(5 x 1 = 5 Marks)				
a)	Give the solution of the equation $\frac{dy}{dx} = \frac{1-y}{1+x}$.	K1	CO1			
b)	Find the solution of $(D^2 + D + 1)y = 0$.	K1	CO1			
c)	Write down the rule for integrating $Pdx + Odv + Rdz$.	K1	CO1			
d)	Write the Lanlace transform integral for periodic functions.	K1	CO1			
e)	Find $I^{-1}\left(\frac{s}{s}\right)$	K1	CO1			
2.	Fill in the blanks (5 x 1 = 5	Mark				
a)	The solution of the differential equation $(xdy + ydx) = 0$ is	K1	CO1			
b)	The Complementary Function of the roots of the differential equation 2,2 and 3 is					
	·	K1	CO1			
c)	The solution of the partial differential equation $\frac{\partial^2 z}{\partial y^2} = \sin y$ is	K1	CO1			
d)	$L^{-1}\left(\frac{s}{s^2+k^2}\right)$ is	K1	CO1			
e)	The $L\left\{\frac{t^2}{r}\right\}$	K1	CO1			
3.	$\begin{array}{c} \text{Choose the correct answer for the following} \\ \text{(5 x 1 = 5)} \end{array}$	5 Mark	(S)			
a)	The degree of the differential equation $\left(\frac{d^3y}{dx^3}\right)^{5/2} + \left(\frac{d^2y}{dx^2}\right)^6 + y = 0$ is	К2	CO1			
b)	(1) 5 (11) 2 (111) 3 (1V) 0 The particular integral of the differential equation is $(D^2 - 4)v = e^{2x}$ is	I				
,	(i) $\frac{x}{4}$ (ii) $\frac{x}{2}$ (iii) $\frac{x^2}{2}$ (iv) $\frac{x^2}{4}$	К2	CO1			
c)	The solution of the partial differential equation $\frac{\partial^2 z}{\partial y^2} = -\sin y$ is					
	(i) $z = siny + \varphi(x)$ (ii) $z = siny + yf(x) + \varphi(x)$ (ii) $z = -siny + \varphi(x)$ (iv) $z = -siny + yf(x) + \varphi(x)$	К2	CO1			
d)	$\frac{\varphi(x)}{L\{\cosh 2t\}}$					
, 	$(i)\frac{s}{s^{2}+4} \qquad (ii)\frac{2}{s^{2}+4} \qquad (iii)\frac{s}{s^{2}-4} \qquad (iv)\frac{2}{s^{2}-4}$	K2	CO1			
e)	$\left L^{-1} \left\{ \frac{1}{(s+a)^2} \right\} \right $ is	K2	CO1			
	(i) te^{-at} (ii) te^{at} (iii) t^2e^{-at} (iv) t^2e^{at}					
4.	Say TRUE or FALSE (5 x $1 = 5$) The differential equation of force F where m is mass and u velocity is given by	Mark	(S)			
u,	The differential equation of force 1 where it is mass and v verocity is given by	K2	COI			

	$F = \frac{d}{dt}(mv).$				
b)	The solution of the equation $r \frac{dp}{dr} + 2p = 0$ is 2c.	K2	CO1		
c)	The complementary function of the differential equation $(D^2 + 4)y = 0$ has imaginary roots.	K2	CO1		
d)	$L\{t^3\} = \frac{3}{s^{n+1}}$	K2	CO1		
e)	Inverse Laplace transform is used to solve differential equations.	K2	CO1		
	SECTION B				
Answer any TWO of the following: (2 x 10 = 20					
5.	Solve the equation $\sqrt{1 + x^2} dx + \sqrt{1 + y^2} dy = 0.$	К3	CO2		
6.	Solve: $(D^2 + 4D + 5)y = e^x + x^3 + \cos 2x$.	K3	CO2		
7.	Solve: $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$.	K3	CO2		
8.	Solve: $pxy + pq + qy = yz$.	K3	CO2		
	SECTION C				
Answer any TWO of the following: (2 x 10 = 20 Marks)					
9.	Solve: $z = px + qy + \sqrt{1 + p^2 + q^2}$.	K4	CO3		
10.	Solve: $p \cot x + q \cot y = \cot z$.	K4	CO3		
11.	Find the transform of rectangular wave given by $f(t) = \begin{cases} 1 & 0 < t < b \\ 1 & b < t < 2b \end{cases}$	K4	CO3		
12.	Find (i) $L\{t^2 cos^2 t\}$ (ii) $L\{\sin at - at \cos at\}$	K4	CO3		
	SECTION D				
Answer any ONE of the following: $(1 \times 20 - 20 \text{ Marks})$					
13.	 a) A particle falls under gravity in a resisting medium whose resistance varies with velocity. Find the relation between distance and velocity if initially the particle starts from rest. 	K5	CO4		
	b) Evaluate the differential equation to find the solution of y in $x \frac{dy}{dx} + y \log x = e^x x^{1-1/2 \log x}$. (10+10)	K5	CO4		
14.	a) Applying the variation of parameters find the solution of $\frac{d^2y}{dx^2} + 4y = \tan 2x$.	К5	CO4		
	b) Solve the equation $(x - 1)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + y = (x - 1)^2$, given that x and e^x are the integrals of the equation without the right-hand member. (10+10)	K5	CO4		
	SECTION E				
Ansv	ver any ONE of the following (1 x 20 =	= 20 M	arks)		
	a) Applying Lagrange's equation solve, $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$.	K6	CO5		
15.	b) Formulate the Charpit's method to solve, $p^2 + q^2 - 2px - 2qy + 1 = 0.$ (10+10)	K6	CO5		
16.	A particle moving a xy plane such that the position (x, y) at any point is given by $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} - 5y = 5$, with initial displacement is zero and initial velocity is 2. Determine the value of y satisfying the equation.	K6	CO5		